Math 522 Exam 6 Solutions

1. Find all solutions to $28823 x \equiv 34891(\bmod 56129)$.

We first find $d=\operatorname{gcd}(28823,56129)$ with the Euclidean algorithm. $56129=$ $1 \cdot 28823+27306,28823=1 \cdot 27306+1517,27306=18 \cdot 1517+0$, so $d=1517$. $34891 / d=23$, so this system will have d solutions. To find them, we must solve $\frac{28823}{1517} x \equiv \frac{34891}{1517}\left(\bmod \frac{56129}{1517}\right)$, i.e. $19 x \equiv 23(\bmod 37)$. We must therefore find the reciprocal of 19 , modulo 37. Fortunately, we don't have to look far, since $19 \cdot 2=38 \equiv 1(\bmod 37)$. Hence $x \equiv 23 \cdot 2=46 \equiv 9(\bmod 37)$. Hence, there are 1517 mutually incongruent solutions, equivalent to $9+37 k$, for $k \in[0,1517)$.
2. For all integers $a_{1}, a_{2}, n_{1}, n_{2}$, with $n_{1}, n_{2}>0$ and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, prove that there is some integer x with $x \equiv a_{1}\left(\bmod n_{1}\right)$ AND simultaneously $x \equiv a_{2}\left(\bmod n_{2}\right)$.
BONUS: extend your proof from 2 modular equations to k modular equations. (all n 's are pairwise relatively prime)

SOLUTION 1: Consider $S=\left\{a_{1}+1 n_{1}, a_{1}+2 n_{1}, a_{1}+3 n_{1}, \ldots, a_{1}+n_{2} n_{1}\right\}$. If two of these (say, the $i^{\text {th }}$ and $\left.j^{\text {th }}\right)$ are congruent $\bmod n_{2}$, then $n_{2} \mid\left(a_{1}+i n_{1}\right)-$ $\left(a_{1}+j n_{1}\right)=(i-j) n_{1}$. But $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, so by Thm 2-3, $n_{2} \mid i-j$. Since $i, j \in\left[1, n_{2}\right]$ we must have $i-j=0$. This proves that S is a complete residue system modulo n_{2}, so in particular one element is congruent to a_{2} modulo n_{2}. But this integer is also congruent to a_{1} modulo n_{1}, because everything in S has this property by the construction of S.
SOLUTION 2 (Maria, Seo Bin): Because $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, we apply Thm 2-4 (or Cor 2-2) to find b, c satisfying $b n_{1}-c n_{2}=a_{2}-a_{1}$. We rearrange to get $b n_{1}+a_{1}=c n_{2}+a_{2}$, and set x to be this value; it satisfies the desired congruences.
SOLUTION 3 (just for fun): Set $x=a_{1} n_{2}^{\phi\left(n_{1}\right)}+a_{2} n_{1}^{\phi\left(n_{2}\right)}$ and use Euler's theorem to see that x satisfies the desired congruences.
BONUS: We need to convert the above argument into an inductive proof. The base case is $k=1$, which is solved with $x=a_{1}$. By our inductive hypothesis, we have some x that satisfies $x \equiv a_{1}\left(\bmod n_{1}\right), x \equiv a_{2}\left(\bmod n_{2}\right), \ldots x \equiv$ $a_{k-1}\left(\bmod n_{k-1}\right)$. Set $m=n_{1} n_{2} \cdots n_{k-1}$, and note that $m \equiv 0\left(\bmod n_{i}\right)$ for $i \in[1, k-1]$. Hence, not only x, but $x+m, x+2 m, x+3 m, \ldots$ all satisfy the first $k-1$ modular equations. Set $S=\left\{x+1 m, x+2 m, \ldots, x+n_{k} m\right\}$. If two of these are congruent $\bmod n_{k}$, then $n_{k} \mid(x+i m)-(x+j m)=(i-j) m$. But $\operatorname{gcd}(x, m)=1$, so by Thm $2-3, n_{k} \mid(i-j)$ and hence $i-j=0$. So S is a complete residue system modulo n_{k}, and hence one element is congruent to a_{k} modulo n_{k}. This completes the inductive step and the proof.
3. High score $=100$, Median score $=75$, Low score $=50$

